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Adiabatic theory for the population distribution in the evolutionary minority game
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We study the evolutionary minority game~EMG! using a statistical mechanics approach. We derive a theory
for the steady-state population distribution of the agents. The theory is based on an ‘‘adiabatic approximation’’
in which short time fluctuations in the population distribution are integrated out to obtain an effective equation
governing the steady-state distribution. We discover the mechanism for the transition from segregation~into
opposing groups! to clustering~towards cautious behaviors!. The transition is determined by two generic
factors: the market impact~of the agents’ own actions! and the short time market inefficiency~arbitrage
opportunities! due to fluctuations in the numbers of agents using opposite strategies. A large market impact
favors ‘‘extreme’’ players who choose fixed opposite strategies, while large market inefficiency favors cautious
players. The transition depends on the number of agents~N! and the effective rate of strategy switching. When
N is small, the market impact is relatively large; this favors the extreme behaviors. Frequent strategy switching,
on the other hand, leads to a clustering of the cautious agents.

DOI: 10.1103/PhysRevE.69.025102 PACS number~s!: 02.50.Le, 64.60.2i, 87.23.Ge, 89.65.Gh
io
d

ce
ar
he
c

so

re

te

c
rl
o

m
f t

de
th

lf-

au
th
ng
om

o
W
b
or

he

ter

ts

All
mes

e

fter

the

its
ir
ac-

e

elf-

e-

r to
eme
es
et
the
d
-to-
Complex adaptive systems are ubiquitous in social, b
logical and economic sciences. In these systems agents a
to the changes in the global environment, which are indu
by the actions of the agents themselves. Despite the app
complexity of these systems some generic features in t
collective behaviors can be studied using models and te
niques of statistical physics. Of particular interest is the
called minority game proposed by Challet and Zhang@1,2#,
which models systems in which the agents have no di
interaction but compete to be in the minority. The gam
evolves as the agents modify their behaviors~strategies!
based on the past experiences. Examples of such sys
include financial markets@3#, rush-hour traffic@4#, and eco-
logical systems. In the context of demand and supply in e
nomic systems, the idea of the minority game is particula
relevant. If the demand is larger than the supply, the price
the goods will increase; this benefits the sellers who are
the minority. Many agent based models of economic syste
and financial markets indeed incorporate the essence o
minority game.

The key question in the study of the agent-based mo
is how evolution changes the behaviors of the agents. In
context of a simple evolutionary minority game~EMG!,
Johnson et al. found that the agents universally se
segregate into two opposing extreme groups@5#. Hod and
Nakar, on the other hand, claimed that a clustering of c
tious agents emerges in a ‘‘tough environment’’ where
penalty for losing is greater than the reward for winni
@8,9#. To understand the mechanism for the transition fr
segregation to clustering, we give a detailed statistical m
chanical analysis of the EMG limited to three groups
agents: two opposing groups and one cautious group.
find that the population distribution of the agents can
studied using an adiabatic approximation, in which the sh
term fluctuations of the market inefficiencies~arbitrage op-
portunities! are integrated out to obtain an equation for t
steady state distribution of the agents.
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We first briefly describe the EMG model. There areN
~odd number! agents. At each round they choose to en
room 0 ~sell a stock or choose route A! or room 1 ~buy a
stock or choose route B!. At the end of each round the agen
in the room with fewer agents~in the minority! win a point;
while the agents in the room with more agents~in the major-
ity! lose a point. The winning room numbers~0 or 1! are
recorded, and they form a historical record of the game.
agents share the common memory containing the outco
from the most recent occurrences of all 2m possible bit
strings of lengthm. The basic strategy is derived from th
common memory. Given the currentm-bit string, the basic
strategy is simply to choose the winning room number a
the most recent pattern of the samem-bit string in the his-
torical record. To use the basic strategy is thus to follow
trend. In the EMG each agent is assigned a probabilityp: he
will adopt the basic strategy with probabilityp and adopt the
opposite of the basic strategy with probability 12p. The
agents withp50 or 1 are ‘‘extreme’’ players, while the
agents withp51/2 are cautious players. The game and
outcomes evolve as less successful agents modify thep
values. This is achieved by allowing the agents with the
cumulated wealth less thand (d,0) to change theirp val-
ues. In the original EMG model, the newp value is chosen
randomly in the interval of widthDp centered around its
original p value. His wealth is reset to zero and the gam
continues.

Johnson and co-workers showed that the agents s
segregate into two opposing extreme groups withp;0 and
p;1 @5–7#. This conclusion is very robust; it does not d
pend onN, d, Dp, m, or the initial distribution ofp. The final
distribution always has symmetric U-shape. Thus, in orde
succeed in a competitive society the agent must take extr
positions ~either always follows the basic strategy or go
against it!. This behavior can be explained by the mark
impact of the agents’ own actions which largely penalizes
cautious agents@7#. However, Hod and Nakar later foun
that the above conclusion is only robust when the reward
©2004 The American Physical Society02-1
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fine ratioR>1. WhenR,1 there is tendency for the agen
to cluster towards cautious behaviors and the distribution
the p value,P(p), may evolve to an inverted-U shape wi
the peak at the middle~in some intermediate cases M-shap
distributions are also observed!. To explain the clustering o
cautious agents, Hod gave a phenomenological theory r
ing the accumulated wealth reduction to a random walk w
time-dependent oscillating probabilities@10#. However, the
dynamical mechanism for the phase transition is still lacki

We have performed extensive simulations of the EMG
a wide range of the values of the parameters,N,R, and d.
Our numerical results show that the transition from segre
tion to clustering is generic forR,1. The transition depend
on all three parameters,N, R, and d. Figure 1 shows the
distribution P(p) for R50.971, d524, andN5101, 735,
1467, 2935, 5869, and 10001. For a givenR(,1) andd, we
observe a transition from segregation to clustering as
number of agentsN increases. The shape of the distributi
P(p) changes from a U shape to an inverted-U shape@near
the transition pointP(p) has an M shape#. The standard
deviationsp of the distribution decreases asN increases. We
define the critical valueNc as the value whensp is equal to
the standard deviation of the uniform distribution, i.e. wh
sp

25*0
1(p21/2)2P(p)dp equal to 1/12. Our results can b

summarized by the general expression for the critical va

Nc5F udu
A~12R!G

2

,

where A is a constant of the order one. Alternatively o
might view the transition by varyingd with fixed N and R.
As udu increases the system changes from clustering to
regation. The critical value is then given byudcu5A(1
2R)AN. Figure 2 plotsNc vs udu for various values ofR.
WhenR→1 the clustering only occurs for either very larg
N or very smalludu. At R51 the clustering disappears an
the segregation to extreme behaviors becomes robust.

FIG. 1. The distributionP(p) for R50.971 andd524. A set
of values ofN5101, 735, 1467, 2935, 5869, and 10001 are us
The distribution is obtained by averaging over 100 000 time st
and ten independent runs.
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Hod and Nakar explained thatR,1 corresponds to diffi-
cult situations or tough environments in which the age
tend to be confused and indecisive and thus become
tious. We find that the effective rate of strategy switchi
~which depends on bothR andd) affects the distribution of
the agents more directly. ForR,1 the agent switches its
strategy every 2udu/(12R) time steps on average. WhenR
or udu is small, the agents have less patience and switch t
strategies more frequently; this, as we shall explain bel
causes large market inefficiency and thus favors cauti
agents. It is the rapid evolution that makes the agents ‘‘c
fused’’ and ‘‘indecisive.’’ On the other hand, when the num
ber of agents is small, the market impact becomes la
Take, for example, a population consisting of only thr
agents withp50, 1/2, and 1, respectively. The cautiou
agent~with p51/2) always loses because he is always in
majority, while the extreme agents are in the majority half
the times. In this case the cautious agent experiences the
market impact of his own action. Indeed our data show t
whenN is small enough the segregation to extreme behav
dominates.

We now show that the mechanism for clustering arou
p51/2 and the transition from clustering to segregation c
be understood clearly from a simplified model in whichp
takes only one of the three possible values 0, 1/2, and 1.
agents in group 0~with p50) make the opposite decision t
the agents in group 1~with p51). We denote the group with
p51/2 as ‘‘groupm.’’ The probability of winning only de-
pends onN0 , Nm , andN1, which are the respective numbe
of agents in group 0,m, and 1.

We begin by evaluating the average wealth reduction
the agents in each of the three groups. Letn be the number of
agents in groupm making the same decision~decision A! as
those in group 0.Nm2n will then be the number of agents i
groupm making the same decision~decision B! as those in
group 1. If N01n,(Nm2n)1N1, or n,Nm/21(N1
2N0)/2, the agents making decision A will win; whenn
.Nm/21(N12N0)/2, the agents making decision B wi
win. The winner’s wealth is increased byR, while the loser’s
wealth is reduced by 1. WithN0 , Nm , and N1 fixed, the

.
s

FIG. 2. The critical valueN vs udcu for R50.6, 0.7, 0.8, 0.9,
0.95, 0.975, 0.98, and 0.99.
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probability of winning depends onn.
WhenNm@1, the distribution ofn can be approximated

by a Gaussian distribution

P~n!5
1

A2psm

exp@2~n2Nm/2!2/~2sm
2 !#,

where sm5ANm/2. Given the distribution, one can writ
down the average wealth change for the agents in group

Dw05RE
0

Nm/21Nd/2

P~n!dn2E
Nm/21Nd/2

Nm
P~n!dn,

where Nd5N12N0. This can be rewritten in term of th
error function erf(x)5(2/Ap)*0

xe2t2dt,

Dw052
12R

2
1

11R

2
erfS Nd

2A2sm
D . ~1!

Similarly we can derive the average wealth change for
agents in group 1:

Dw152
12R

2
2

11R

2
erfS Nd

2A2sm
D . ~2!

Since the numbersN0 andN1 are fluctuating, and on av
erageN0 andN1 should be the same, we can average out
short time fluctuations ofNd . This is anadiabatic approxi-
mation. The average wealth change of the agents in group
and 1 is given byDwe5(N0Dw01N1Dw1)/(N01N1). Sub-
stituting the expressions forDw0 andDw1, we have

Dwe52
12R

2
2

11R

2

Nd

N01N1
erfS Nd

2A2sm
D . ~3!

Note that the second term inDwe , which is due to the
fluctuations ofNd , is always negative@since erf(x) is an odd
function#. WhenN0ÞN1, the winning probabilities for mak-
ing decisions A and B are not equal, and the market is
efficient ~there is a short-time arbitrage opportunity!. Thus
this term can be interpreted as the cost due to market in
ciency. Large market inefficiency on average penalizes
players taking ‘‘extreme’’ positions.

For the agents in groupm, if n,Nm/21Nd/2, then n
agents in the group win, whileNm2n agents in the group
lose. On the other hand, ifn.Nm/21Nd/2, then Nm2n
agents in the group win, butn agents lose. We need to tak
these two cases into account when evaluating the avera

Dwm5
1

Nm
F E

0

Nm/21Nd/2

@Rn2~Nm2n!#P~n!dn

1E
Nm/21Nd/2

Nm
@R~Nm2n!2n#P~n!dnG .

After a few algebraic steps, we arrive at
02510
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Dwm52~12R!/22
11R

A2pNm

exp@2Nd
2/~2Nm!#. ~4!

The first term inDwm is the same as that inDwe . The
second term can be interpreted as the market impact@7#. A
large market impact~self-interaction! penalizes the cautiou
players; their own decisions increase their chances of be
in the majority and hence increase their chances of losin

To determine the transition from clustering to segregati
we need to calculate the distribution ofNd which will allow
us to evaluateDwe and Dwm . Let us denote the change i
Nd in one time step asdN. On averagedN52N0 /„udu/@(1
2R)/2#…5N0(12R)/udu; this is the average number of ex
treme agents switching their strategies per time step~adapta-
tion rate!. The dynamics ofNd can be described as a rando
walk with mean reversal~there is a higher probability mov
ing towardsNd50 than away from it!. The individual step of
the walk is given by6dN. The probability for changing
from Nd to Nd1dN is given byW1(Nd), and the probability
for changing toNd2dN is given byW2 , whereW65 1

2 @1
7erf(Nd /(2A2sm)#. The steady state probability distribu
tion Q(Nd) for Nd should satisfy

Q~Nd!5W2~Nd1dN!Q~Nd1dN!1W1~Nd2dN!Q~Nd

2dN!. ~5!

For smalldN one can convert the above equation to a d
ferential equation. The solution ofQ(Nd) is given by

Q~Nd!}expF2
2

dNE0

Nd
erfS n

2A2sm
D dnG . ~6!

Now we averageDwe and Dwm over the distribution of
Q(Nd). We can easily obtain that

Dwe52
12R

2
2

~11R!

2

dN

2~N01N1!
. ~7!

Dwm , on the other hand, is given by

Dwm52~12R!/22
11R

A2pNm

^exp@2Nd
2/~2Nm!#&,

where the average is over the distributionQ(Nd). This can
be approximated as

Dwm;2
12R

2
2

11R

A2p

1

ANm1sd
2

,

since in the rangeNd,sm , from which the main contribu-
tion to the average comes,Q(Nd) can be well approximated
by a Gaussian distribution centered at zero with the wi
sd5AA2p/2AsmdN. At the critical point, N05N15Nm
5N/3, andDwe5Dwm . It is easy to verify that this occurs
when dN;ANm. As dN5N0(12R)/udu, the crossover
value for udu is udcu5A(12R)AN, whereA is a constant of
the order one.
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The theory can be applied to a general EMG involvingM
groups of agents withp5p1 ,p2 , . . . ,pM and a number of
agentsN1 ,N2 , . . . ,Nm . The wealth reduction for a given
Group l is given by~the derivation is given elsewhere!

dwl52
~12R!

2
2S pl2

1

2D ~11R!erfS NS p̄2
1

2D
A2sm

D
2

A2~11R!

Apsm

pl~12pl !expF2N2S p̄2
1

2D 2

/~2sm
2 !G ,

where p̄5(1/N)( jNj pj andsm5A( jNj pj (12pj ). We can
associate the second term with the market inefficie
~which affects mostly the extreme players withp;0 or 1!
and the third term with the market impact~which affects
mostly the cautious players withp51/2). It is clear that
N( p̄2 1

2 ) plays the role ofNd in the three-group EMG. The
market inefficiency is measured by the fluctuation ofN( p̄
2 1

2 ). Consider the version of the original EMG in which th
agent chooses a newp randomly when its wealth is belowd.
We can similarly argue thatdN ~the average change inNp̄)
is given by dN;N(12R)/udu. So we haveudcu5A(1
2R)AN, or equivalently,

Nc5F udu
A~12R!G

2

.

This agrees very well with the numerical data. Figure
clearly shows thatNc}d2, and Fig. 3 shows thatNc /d2

}1/(12R)2 whenR is close to 1.
We can also understand the version of the model in wh

the newp value is chosen in the interval of widthdp around
the oldp value. Since a smallerdp leads to a smallerdN, the
cost due to market inefficiency is reduced. Thus smallerdp
favors the ‘‘extreme’’ agents asudcu is smaller; this is con-
sistent with the results obtained in Ref.@11#. Reference@12#
found that the periodic boundary condition used in the red
tribution of the p value favors clustering. This is also no
surprising. With the periodic boundary condition inp, dN is
t

e
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effectively increased, because somep50 agents can switch
to p51 agents, even whendp is small.

In conclusion, we have derived a general formalism
studying the transition from clustering to segregation in
evolutionary minority game. The theory is based on an ad
batic approximation, in which the short-time fluctuations a
integrated out to obtain a steady-state population distri
tion. We find that the effective rate of evolution plays a
important role in determining the resulting steady-state po
lation distribution. Frequent strategy switching leads to la
market inefficiency that favors clustering of cautious agen
This result is quite universal, and it should provide mu
needed insight for studying the effect of evolution in age
based models.
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FIG. 3. Nc /d2 vs 12R for the original EMG with random re-
distribution.
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