RAPID COMMUNICATIONS

Adiabatic theory for the population distribution in the evolutionary minority game

PHYSICAL REVIEW E 69, 025102R) (2004

Kan Chent Bing-Hong Wang-? and Baosheng Yuan
!Department of Computational Science, Faculty of Science, National University of Singapore, Singapore 117543
2Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China
(Received 7 November 2003; published 26 February 2004

We study the evolutionary minority gantEMG) using a statistical mechanics approach. We derive a theory
for the steady-state population distribution of the agents. The theory is based on an “adiabatic approximation”
in which short time fluctuations in the population distribution are integrated out to obtain an effective equation
governing the steady-state distribution. We discover the mechanism for the transition from segrégation
opposing groupsto clustering(towards cautious behavigrsThe transition is determined by two generic
factors: the market impadpf the agents’ own actionsand the short time market inefficiendgrbitrage
opportunitie$ due to fluctuations in the numbers of agents using opposite strategies. A large market impact
favors “extreme” players who choose fixed opposite strategies, while large market inefficiency favors cautious
players. The transition depends on the number of agéhtand the effective rate of strategy switching. When
N is small, the market impact is relatively large; this favors the extreme behaviors. Frequent strategy switching,
on the other hand, leads to a clustering of the cautious agents.
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Complex adaptive systems are ubiquitous in social, bio- We first briefly describe the EMG model. There aYe
logical and economic sciences. In these systems agents addptld number agents. At each round they choose to enter
to the changes in the global environment, which are inducedoom 0 (sell a stock or choose route) Ar room 1(buy a
by the actions of the agents themselves. Despite the apparestock or choose route)BAt the end of each round the agents
complexity of these systems some generic features in thein the room with fewer agentsn the minority win a point;
collective behaviors can be studied using models and techwhile the agents in the room with more agefitsthe major-
niques of statistical physics. Of particular interest is the soity) lose a point. The winning room numbe(8 or 1) are
called minority game proposed by Challet and Zhahg)], recorded, and they form a historical record of the game. All
which models systems in which the agents have no direcgents share the common memory containing the outcomes
interaction but compete to be in the minority. The gameffom the most recent occurrences of af' Dossible bit
evolves as the agents modify their behavidstrategies strings of lengthm. T_he basic strategy is d_erlved from _the
based on the past experiences. Examples of such Systeﬁgmmon_me_mory. Given the currgm—plt siring, the basic
include financial marketg3], rush-hour traffid4], and eco- strategy is simply to choose the winning room number after
logical systems. In the context of demand and supply in ecot—he. most recent pattern of th? Samebit ;trlng in the his-
nomic systems, the idea of the minority game is particularlytOrlcal record. To use the basp stratggy s thus to fc')l.low the

' }rend. In the EMG each agent is assigned a probalgplitye

relevant. If the demand is larger than the supply, the price Olill adopt the basic strategy with probabilipyand adopt the

the goods will increase; this benefits the sellers who are "E)pposite of the basic strategy with probability-p. The
the minority. Many agent based models of economic SyStengents withp=0 or 1 are “extreme” players, while the

aqd fi_nancial markets indeed incorporate the essence of t%ents withp=1/2 are cautious players. The game and its
minority game. outcomes evolve as less successful agents modify their
The key question in the study of the agent-based modelgg|yes. This is achieved by allowing the agents with the ac-
is how evolution changes the behaviors of the agents. In thgymulated wealth less thah (d<0) to change theip val-
context of a simple evolutionary minority gam&MG),  yes. In the original EMG model, the nepwalue is chosen
Johnson et al. found that the agents universally self- randomly in the interval of widthAp centered around its
segregate into two opposing extreme gro{ips Hod and  original p value. His wealth is reset to zero and the game
Nakar, on the other hand, claimed that a clustering of caueontinues.
tious agents emerges in a “tough environment” where the Johnson and co-workers showed that the agents self-
penalty for losing is greater than the reward for winningsegregate into two opposing extreme groups \withO and
[8,9]. To understand the mechanism for the transition fromp~1 [5—7]. This conclusion is very robust; it does not de-
segregation to clustering, we give a detailed statistical mepend onN, d, Ap, m, or the initial distribution ofp. The final
chanical analysis of the EMG limited to three groups ofdistribution always has symmetric U-shape. Thus, in order to
agents: two opposing groups and one cautious group. Weucceed in a competitive society the agent must take extreme
find that the population distribution of the agents can bepositions (either always follows the basic strategy or goes
studied using an adiabatic approximation, in which the shortagainst ii. This behavior can be explained by the market
term fluctuations of the market inefficienciéarbitrage op- impact of the agents’ own actions which largely penalizes the
portunitieg are integrated out to obtain an equation for thecautious agent$7]. However, Hod and Nakar later found
steady state distribution of the agents. that the above conclusion is only robust when the reward-to-
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FIG. 1. The distributiorP(p) for R=0.971 andd=—4. A set FIG. 2. The critical valueN vs |d| for R=0.6, 0.7, 0.8, 0.9,
of values ofN=101, 735, 1467, 2935, 5869, and 10001 are used?.95, 0.975, 0.98, and 0.99.
The distribution is obtained by averaging over 100 000 time steps
and ten independent runs. Hod and Nakar explained th&<1 corresponds to diffi-
cult situations or tough environments in which the agents
fine ratioR=1. WhenR< 1 there is tendency for the agents tend to be confused and indecisive and thus become cau-
to cluster towards cautious behaviors and the distribution ofious. We find that the effective rate of strategy switching
the p value, P(p), may evolve to an inverted-U shape with (which depends on botR andd) affects the distribution of
the peak at the middlén some intermediate cases M-shapedthe agents more directly. F&R<1 the agent switches its
distributions are also observedo explain the clustering of strategy every Ri|/(1—R) time steps on average. Whéh
cautious agents, Hod gave a phenomenological theory relaor |d| is small, the agents have less patience and switch their
ing the accumulated wealth reduction to a random walk withstrategies more frequently; this, as we shall explain below,
time-dependent oscillating probabiliti¢s0]. However, the causes large market inefficiency and thus favors cautious
dynamical mechanism for the phase transition is still lackingagents. It is the rapid evolution that makes the agents “con-
We have performed extensive simulations of the EMG forfused” and “indecisive.” On the other hand, when the num-
a wide range of the values of the paramet&dsR, andd.  ber of agents is small, the market impact becomes large.
Our numerical results show that the transition from segregalake, for example, a population consisting of only three
tion to clustering is generic fdR<<1. The transition depends agents withp=0, 1/2, and 1, respectively. The cautious
on all three parameterdy, R, and d. Figure 1 shows the agent(with p=1/2) always loses because he is always in the
distribution P(p) for R=0.971,d=—4, andN=101, 735, majority, while the extreme agents are in the majority half of
1467, 2935, 5869, and 10001. For a giR{i<1) andd, we  the times. In this case the cautious agent experiences the full
observe a transition from segregation to clustering as th&1arket impact of his own action. Indeed our data show that
number of agentdl increases. The shape of the distributionwhenN is small enough the segregation to extreme behaviors
P(p) changes from a U shape to an inverted-U shagar dominates.
the transition pointP(p) has an M shage The standard We now show that the mechanism for clustering around
deviationg, of the distribution decreases Bisincreases. We Pp=1/2 and the transition from clustering to segregation can
define the critical valudl, as the value whem, is equal to  be understood clearly from a simplified model in whigh
the standard deviation of the uniform distribution, i.e. whentakes only one of the three possible values 0, 1/2, and 1. The
2= [1(p—1/2)’P(p)dp equal to 1/12. Our results can be agents in group Qwith p=0) make the opposite decision to

summanzed by the general expression for the critical valuethe agents in group (lNlth p=1). We denote the group with
p=1/2 as “groupm.” The probability of winning only de-

d ]2 pends orNg, N,,, andN,, which are the respective numbers
—} of agents in group Om, and 1.

A(1-R) We begin by evaluating the average wealth reduction for
the agents in each of the three groups.iLbe the number of
where A is a constant of the order one. Alternatively oneagents in groupn making the same decisiqdecision A as
might view the transition by varying with fixed N andR.  those in group ON,,—n will then be the number of agents in
As |d| increases the system changes from clustering to segroup m making the same decisidiecision B as those in
regation. The critical value is then given Hg=A(1 group 1. If Ng+n<(N,—n)+N;, or n<Ng/2+ (N,
—R)N. Figure 2 plotsN, vs |d| for various values oR. —Np)/2, the agents making decision A will win; whem
WhenR—1 the clustering only occurs for either very large >N,/2+(N;—Ng)/2, the agents making decision B will
N or very small|d|. At R=1 the clustering disappears and win. The winner’s wealth is increased By while the loser’s
the segregation to extreme behaviors becomes robust. wealth is reduced by 1. WitiNy, N, and N fixed, the

N¢=
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probability of winning depends on. R ,
exd —Ng/(2N)]. 4

WhenN,,>1, the distribution ofn can be approximated Aw,=—(1-R)/2—
by a Gaussian distribution V27 Ny,
1 The first term inAw,, is the same as that iAw,. The
P(n)= exfl —(n—Nw/2)%/(205)], second term can be interpreted as the market impEctA
V2mog, large market impactself-interaction penalizes the cautious

players; their own decisions increase their chances of being
where o,= N,/2. Given the distribution, one can write in the majority and hence increase their chances of losing.
down the average wealth change for the agents in group 0, To determine the transition from clustering to segregation,
we need to calculate the distribution Nf; which will allow
Nm/2+Ng/2 Nm us to evaluatAw, and Aw,,. Let us denote the change in
AWO:RJO P(n)dn— me/2+Nd/2P(n)dn, Ng in one time step asN. On averageSN=2N,/(|d|/[ (1
—R)/2])=Ng(1—R)/|d|; this is the average number of ex-

where Ng=N;—N,. This can be rewritten in term of the treme agents switching their strategies per time &iefapta-

error function erfk) = (2/ xe—tzdt, tion rate. The dynamics oNy can be described as a random
©=( \/;)fo walk with mean reversdthere is a higher probability mov-
1-R 14R N ing towardsNy= 0 than away from jt The individual step of
AWn= — + rf d | 1 the walk is given by= éN. The probability for changing
0 e )
2 2 2\/§om from N4 to Ng+ 6N is given byW, (Ng), and the probability

o _ for changing toN4— 8N is given byW_ , whereW. =3[1
Similarly we can derive the average wealth change for ther erf(N,/(2\20,,)]. The steady state probability distribu-

agents in group 1: tion Q(Ng) for Ny should satisfy
1-R 1+R Ng Q(Ng)=W_(Ng+ oN)Q(Ngy+ oN) + W, (Ng— N)Q(Ng
Aw,=— - erf . 2
2 2 2\20,, — 5N). (5)

Since the numberkl, andN; are fluctuating, and on av- For small SN one can convert the above equation to a dif-
erageN, andN; should be the same, we can average out théerential equation. The solution @(Ny) is given by
short time fluctuations olN,. This is anadiabatic approxi-
mation The average wealth change of the agents in groups 0 2 (Ng n
and 1 is given byAw, = (NoAwg+ N;Aw,)/(No+N;). Sub- Q(Nd)“ex% - mf eff( 2&0,“) dn

stituting the expressions fdxrwg, and Aw,, we have
Now we averageAw, and Aw,, over the distribution of
Ng ) 3 Q(Ng). We can easily obtain that

2\/§a'm

Note that the second term iw,, which is due to the
fluctuations ofNy, is always negativgsince erf§) is an odd
function]. WhenNy# N4, the winning probabilities for mak-
ing decisions A and B are not equal, and the market is not

(6)

1-R 1+R Ny

7 2 NgFN, o

Aw=

1-R (1+R) 6N
2 2 2(Ng+Np)~

Aw=

)

Aw,,, on the other hand, is given by

) * ' ) X . +R
efficient (there is a short-time arbitrage opportunitifhus Aw,=—(1—-R)/2— (exp[—Ngl(ZNm)D,
this term can be interpreted as the cost due to market ineffi- V27N,
ciency. Large market inefficiency on average penalizes the ) o ]
players taking “extreme” positions. where the average is over the distributi@QiNgy). This can

For the agents in groum, if n<N,/2+N42, thenn D€ approximated as
agents in the group win, whildl,,—n agents in the group
lose. On the other hand, >N /2+Ny2, thenN,—n AW — 1_R_ 1+R 1
. . m 1
agents in the group win, but agents lose. We need to take 2 27 \/Nm+gd
these two cases into account when evaluating the average:
since in the rang®& <o, from which the main contribu-

1 | (Nw2+Ng2 tion to the average come®(Ny) can be well approximated
AWm_|\|_m fo [Rn=(Np—n)]P(n)dn by a Gaussian distribution centered at zero with the width
" oq=\2m2\Jo,oN. At the critical point, Ng=N;=N,,

m =N/3, andAw.=Aw,,. It is easy to verify that this occurs

+ R(N,,—n)—n]P(n)dn|. £ m
J'Nm/2+Nd/2[ (N=n)=nP(n) when 6N~+N;. As SN=Ny(1—R)/|d|, the crossover
value for|d| is |d.|=A(1—R) N, whereA is a constant of

After a few algebraic steps, we arrive at the order one.
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The theory can be applied to a general EMG involvivig 1000
groups of agents witlp=p,,p,, ...,py and a number of
agentsN{,N,, ... ,N,,. The wealth reduction for a given
Groupl is given by(the derivation is given elsewhegre

1

. (1-R) ( 1 N(p_i)

O\N|—_ 2 — p|—§)(l+R)erf \/E—o-m
V2(1+R)

2
- = h(l- p.)eXp{ - NZ(H— E) 1(202)
\/;O'm 2

100 4

N/d®

10 4

wherep=(1/N)Z;N;p; and o= VZ;Njp;(1—p;). We can 1
associate the second term with the market inefficiency
(which affects mostly the extreme players with-0 or 1)

0.01

041

and the third term with the market impa@which affects FIG. 3. N./d? vs 1—R for the original EMG with random re-

mostly the cautious players with=1/2). It is clear that distribution.

N(p—3) plays the role ol in the three-group EMG. The
market inefficiency is measured by the fluctuationNiffp’

effectively increased, because sopre 0 agents can switch

—1). Consider the version of the original EMG in which the ©© P=1 agents, even whe#ip is small.

agent chooses a nggwandomly when its wealth is belod
We can similarly argue thaiN (the average change Mp)
is given by SN~N(1—R)/|d|. So we have|d,/=A(1

In conclusion, we have derived a general formalism for
studying the transition from clustering to segregation in the
evolutionary minority game. The theory is based on an adia-
batic approximation, in which the short-time fluctuations are

—R)N, or equivalently, integrated out to obtain a steady-state population distribu-
d 2 j[ion. We find 'ghat the e_ff_ective rate o_f evolution plays an

N.= [—} . important role in determining the resulting steady-state popu-

A(1-R) lation distribution. Frequent strategy switching leads to large

Thi I with th ical data. Fi 2market inefficiency that favors clustering of cautious agents.
IS agrees very wer wi € numerical data. FIQUre Zrpis regylt is quite universal, and it should provide much

2 . 2
C'i}'ﬂl'y ;hgwsh th"g\.‘co‘? , anlelg. 3 shows thal./d needed insight for studying the effect of evolution in agent-
«1/(1-R)“ whenR s close to 1. based models.

We can also understand the version of the model in which
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